
   
Abstract-- There are many classification problems in 
petroleum reservoir characterization, an example being the 
recognition of lithofacies from well log data. Data classification 
is not an easy task when the data are not of numerical origin. 
This paper compares a number of approaches to classify 
porosity into groups (e.g. very poor, poor, fair, etc.) using 
petrographical characteristics, which are often described in 
linguistic statements in core analysis.  
 
Index Terms-- linguistic classification, soft computing, 
petroleum engineering 

I. INTRODUCTION 

 Understanding the form and spatial distribution of 
heterogeneities in sedimentary rock properties, such as 
porosity, is fundamental to the successful characterisation 
of petroleum reservoirs. Poor understanding of lithofacies 
distribution results in inaccurate definitions of reserves and 
improper management schemes.  Mapping the continuity of 
major lithofacies is of great importance in reservoir 
characterisation studies. It is, however, impossible to start 
this mapping exercise until the major types of lithofacies 
have been recognised and identified. 
 Lithofacies recognition is often done in drilled wells 
where suitable well logs and core samples are available. 
Techniques, such as k-means cluster analysis [1], 
discriminant analysis [2], artificial neural networks [3], and 
fuzzy logic methods [4] are popular pattern recognition 
methods for classifying well log data into discrete classes. 
These methods, however, cannot be applied without a prior 
understanding of the lithological descriptions of the core 
samples extracted at selected well depths. Core descriptions 
are usually available from routine core analysis reports in 
exploration and appraisal wells. 
 The recognition of major lithofacies is not an easy task 
in heterogeneous reservoirs. Rock characteristics such as 
petrophysical, depositional (or sedimentary), and diagenetic 
(or textural) features are common parameters that are used 
to define lithofacies. However, geologists with different 
field experiences create different lithofacies groupings 
based on the same observational information. These diverse 
definitions occur because only a series of qualitative or 
linguistic statements are provided in lithological 
descriptions. Thus a subjective decision must be made on 
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how many dominant lithofacies are present and what these 
lithofacies are. 
 The objective of this paper is to introduce a systematic 
approach for the handling of linguistic descriptions of core 
samples, by using a number of approaches to classify 
porosity into groups using petrographical characteristics. 
The three techniques used are an expert system approach, a 
supervised clustering approach, and a neural network 
approach. We first review the basics of lithological 
descriptions and describe each technique. We then 
demonstrate these techniques using a data set available for 
an oil well in a reservoir located in the North West Shelf, 
offshore Australia. We then apply the methods to porosity 
classification based on core descriptions, and validate the 
model using unseen cases with known porosity. 

II. LITHOLOGICAL DESCRIPTIONS 

 Classifying geological data is a complicated process 
because linguistic statements dominates the  results of core 
analysis studies. The problem is worse for lithological 
descriptions. Each core sample is usually described by a 
number of petrographic characters. These characters are 
described in terms of linguistic petrographic terms, such as 
grain size, sorting, and roundness. A typical statement for a 
core sample could be: 
 

"Sst: med dk gry f-med gr sbrndd mod srt arg Mat 
abd Tr Pyr Cl Lam + bioturb abd" 

 

which means, "Sandstone: medium, dark gray, fine-medium 
grain, sub-rounded, moderate sorting, abundant argillaceous 
matrix, trace of pyrite, calcareous laminae, and abundant 
bioturbation". 
 Although these statements are subjective, they do 
provide important indications about the relative magnitudes 
of various lithohydraulic properties (e.g. porosity and 
permeability). It is, however, difficult to establish an 
objective relationship between, say, porosity levels (e.g. 
low, medium or high) and the petrographic characters.  

III. DATA 

 An oil well located in the North West Shelf, offshore 
Australia, provided a routine core analysis report for this 
field study. There were 226 core plug samples taken from a 
total of 54 metres of cores obtained from three intervals. 
The reservoir is composed of sandstones, mudstones, and 
carbonate cemented facies. The porosity and permeability 
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values ranged from 2 to 22 percent and from 0.01 
millidarcy to 5.9 darcies, respectively. 
 The report includes porosity measurements from helium 
injection as well as detailed core (lithological) descriptions 
on each sample.  The lithological descriptions were 
summarised into six porosity-related sets: grain size, 
sorting, matrix, roundness, bioturbation, and laminae. Each 
character was described by a number of attributes. A total 
of 49 attributes were used. Table 1 tabulates the character-
attributes relationships used in this study. 
 

Descriptions Character  
(attribs)  Attributes 
Grain size 
(12) 

The general dimensions (e.g. ave. diameter 
or volume) of the particles in a sediment or 
rock, or of the grains of a particular mineral 
that made up a sediment or rock. 

  Very Fine, Very-Fine to Fine, Fine, Fine 
to Medium, Medium, Fine to Coarse, 
Medium to Fine, Medium to Coarse, 
Fine to Very Coarse, Coarse to Very 
Coarse, Very Fine with Coarse Quartz, 
Fine with Coarse Quartz. 

Sorting 
(6) 

The dynamic process by which sedimentary 
particles have some particular characteristic 
(eg. simil. of size, shape, or specific gravity). 

  Well, Moderate to Well, Moderate to 
Poor, Moderate, Poor to Moderate, Poor. 

Matrix 
(14) 

The smaller or finer-grained, continuous 
material enclosing, or filling the interstices 
between, the larger grains or particles of a 
sediment or sedimentary rock. 

  Argillaceous (Arg), Sideritic (Sid), 
Siliceous (Sil), Sid with Arg, Sid with 
Sil, Arg with Sil, Sil with Arg, 
Carbonaceous, Calcareous, Pyritic with 
Arg, etc. 

Roundness 
(8) 

The degree of abrasion of a clastic particle 
as shown by the sharpness of its edges and 
corners as the ratio of the average radius of 
curvature of the maximum inscribed sphere. 

  Sub-angular (subang), Angular (Ang) to 
Subang, Subang to Sub-rounded 
(subrnd), Subrnd to Ang, Subang, 
Subrnd, etc. 

Bioturb-
ation (6) 

The churning and stirring of a sediment by 
organisms. 

  Abundant bioturbation (bioturb), 
Increase bioturb, Bioturb, Decrease 
bioturb, Minor bioturb, Trace of bioturb. 

Lamina 
(10) 

The thinnest or smallest recognisable unit 
layer of original deposition in a sediment or 
sedimentary rock 

  Irregular argular, Irregular Calcareous, 
Trace of Calcareous, Less Traces, 
Argillaceous, Calcareous, Irregular Silt, 
Thick, Irregular. 

 
Table 1. Character and attributes used for porosity classif. 

 The objective of this study is to demonstrate how 
intelligent techniques can be applied in classifying 
linguistic descriptions of core samples into various porosity 
classes. We will first develop the knowledge base, 
implemented for the three methods as expert system, 
clustering diagram or neural network weights, respectively. 
The knowledge base is developed using a number of known 
porosity cases (training data). The knowledge base will then 
be tested using an unseen set of core descriptions (test data). 
The performance can be evaluated by comparing the 
predicted porosity classes with the actual classes using the 
correct-recognition rate (i.e. number of correct 
classifications divided by total number of samples). 
 In the following sections the three techniques are briefly 
described, followed by the results section, our conclusions, 
and suggestions for future work. 

IV. EXPERT SYSTEM TECHNIQUE 

 We have used an expert system knowledge acquisition 
and maintenance technique, to establish new rules (acquire 
knowledge) and to update existing rules (maintain 
knowledge) when suitable observations are obtained. 
Knowledge is added to the system only in response to a 
case where there is an inadequate (i.e. none) or incorrect 
classification. The notion of basing classification on 
keystone cases has previously been used in petrography [5]. 
In cases of an incorrect classification, a human expert needs 
to provide a justification, in terms of the difference(s) 
associated with the case that shows the error or prompts the 
new rules,  that explains why his/her interpretation is better 
than the interpretation given for such cases. Hence, the 
approach is able to adapt new rules or knowledge without 
violating previously established rules, and hence, all  rules 
are consistent within the system. Rules are formulated in 
the following form: 
 

  IF [conditions] THEN [conclusion]. 
 

 The basic logic is simple and interpretable. There is 
only one requirement to develop the rule bases: all the cases 
must be described with a fixed set of descriptive characters. 
The rules can be viewed as binary decision trees. Each node 
in the tree is a rule with any desired conjunctive conditions. 
Each rule makes a classification, the classification is passed 
down the tree, and the final classification is determined by 
the last rule that is satisfied. The technique is very simple 
and has no further complications beyond the description 
given here. Its benefits derive from its simplicity, and its 
applicability without the need for an expert system 
specialist to build the knowledge base. There are some 
deficiencies, which we describe in the context of our 
results. 

V. SUPERVISED CLUSTERING 

 A supervised clustering technique was also used. 
Clustering techniques are generally non-supervised. The 
benefit of the supervised approach is that the expert can 
label as acceptable clusters which make suitable distinctions 
in the data classification. Clusters which are not suitable 
can be labelled for further clustering. A portion of the data 



is held out (as for all the three techniques used) from the 
technique so that the success rate can be validated using this 
unseen data. 
 Visual Clustering Classifier (VC+) is a visual system 
through which users can conduct clustering operations to 
generate classification models.  Clustering as an 
unsupervised learning mechanism has been widely used for 
clustering analysis [6]. Clustering operations divide data 
entities into homogenous groups or clusters according to 
their similarities. As a clustering algorithm, k-means 
algorithm measures the similarities between data entities 
according to the distances between them. Lin and Fu [7] 
applied a k-means based clustering algorithm for the 
classification of numerical data entities. To apply clustering 
algorithm to data mining applications, two important issues 
need to be resolved: large data set and categorical attribute. 
Extended from k-means algorithm, k-prototype algorithm 
[8] has resolved these two issues.  
 This k-prototype algorithm is based on an assumption 
that the similar data entities should be located closer than 
other data entities. Those similar data entity groups are 
normally called clusters. A classification divides a data set 
into a few groups that are normally called classes. The 
classes are determined either by human experts or a few 
data fields of the data entities, such as the application 
discussed in this paper. Therefore clusters and classes are 
not equivalent. To apply k-prototype algorithm for 
classification, the class distribution of the data entities in 
the generated clusters must be considered.  
 Two steps are required for the development of a 
classification model using VC+: cluster hierarchy 
construction; and classification model generation. Once the 
training data set has been loaded into VC+, a root cluster 
node for the cluster hierarchy is generated. The root 
contains the entire training data set. The user can apply the 
clustering operation on the data set to generated clusters 
that will be the children nodes of the root node. A leave 
cluster node in the cluster hierarchy will be further 
partitioned if the shape of distribution is not good or there is 
not a dominant class in the data entities in this cluster.  
 Figure 2 illustrates the procedure for generating a 
classification model. Firstly three clusters that have centers: 
a, b and c are generated by a clustering operation on root 
node. The cluster hierarchy will be generated. This cluster 
hierarchy will be expended after node a is further 
partitioned. 
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(a) Clustering result on root. 
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(b) Cluster hierarchy. 
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(c) Result of the clustering on node a. 
 
Figure 2. Cluster hierarchy construction. 
 
 If there is a dominant class in the data entities in a leave 
cluster node, the center of this cluster will be marked as this 
class.  The classification model generated by VC+ consists 
of all the leave nodes that have been marked. The class of 
the cluster in the classification model which has the shortest 
distance to a given data entity will determine the class of 
this data entity. If there is no dominant class for the data 
entities in a leave node and this leave node cannot be 
further partitioned due to the number of data entities 
contained, this leave node will be left unmarked and will 
not be included in the classification model.  
 To apply k-prototype clustering for classification, there 
are many non-deterministic criteria that direct affect the 
classification result, such as the number of clusters, the start 
cluster centers, and the chosen features. However it is out of 
computational power if all of the combination of these 
criteria were taken considered. VC+ provides various 
visualization tools to display data entities, statistical results 
and also allows users to compare the results of different 
clustering operations. In this fashion, users’ expertise can 
be incorporated with the procedure for generating 
classification models.  
 VC+ adopts visualization techniques to incorporate 
users’ expertise in the procedure for the generation of 
classification models. This approach increases the 
exploration space of the mining system. This approach has 
advantages in handling noise and outliners. 

VI. NEURAL NETWORK 

 A standard 12 input x 7 hidden x 4 output neural 
network was used. The input data was encoded by means of 
a linguistic encoding technique into 12 numeric input 
variables.  
 The simplest case is for "Sorting", where the characters 
of Poor – Poor-moderate – Moderate-poor – Moderate – 
Moderate-well – Well-moderate – Well are easy to place in 
a sequence, and allocated values evenly distributed from 0 



to 1. Neural network inputs for the standard 
backpropagation algorithm used in some 70% of 
applications worldwide, are usually normalised to this 
range. 
 For some of the fields more complicated encoding was 
necessary. For example, in the case of a circular linguistic 
term ordering, two variables are required to be able to 
encode the values. The values of the sine and cosine for an 
even distribution around a circle is required. This is 
illustrated for the input property Sphericity and Roundness 
in Figure 3.  
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Figure 3. Circular encoding of Roundness (Sphericity) top,  
  normalisation to inputs shown above 
 
 As there are eight values, the familiar points of 0°, 45°, 
90° and so on are used. The (sin,cos) tuples are shown in 
Figure 3. The values are in the range from -1 to 1, which are 
then normalised to the range 0 to 1. The property of this 
circular encoding is that for all of the adjacent points the 
sum of the absolute values of the changes to the values is 
the same. 

VII. RESULTS  

 The experiments were run using the full date set, split 
2/3 training, 1/3 testing, using all three techniques. The 
overall results were very similar. The supervised clustering 
algorithm produced 64.2% accuracy, the neural network 
result on the test set was 60%, and the expert system result 
was 59.7%.  
 Note that the expert system required some user effort in 
manual pre-processing to discover plausible rules and 
sequencing  the data appropriately, to compensate for 
missing parameters. This is due to the system relying on 
cornerstone cases, which is prone to bias from the sequence 

of presentation of examples. Qualitatively, this appeared to 
be a greater cognitive burden than the equivalent task of 
encoding the inputs for the neural network, as that encoding 
had to be done once only and did not require perusal of the 
entire training set and the attempted extraction of 
significant patterns. 
 Some extra experiments were performed using the 
expert system technique to discover the significance of such 
user pre-processing. 
 In the first of these extra experiments, very specific 
rules were created for each pattern, choosing all of the 
available non-null characters. This produced a result of 
51.6% on the test set. This indicates that the previous effort 
in manual pre-processing had some significant effect, and 
the difficulty of doing this.  
 The next experiment was to include the null fields for 
each pattern in each rule. Thus, if for a pattern no "Sorting" 
character was reported, the rule specified that the value for 
this field be "None". This produced a result of 38.7%, 
verifying our belief that the system was providing some 
generalisation, and demonstrating the importance of making 
sensible rules. At the same time, we discovered the 
minimum possible error on the test set (with this split of the 
data) of 15% as there are some patterns with identical 
characters and different category. 

VIII. CONCLUSION 

 We have used three techniques for using linguistic 
information from core analysis reports for classification. 
We have found that the use of pre-processing and 
clustering, and fuzzy output encodings both improve the 
results, which are otherwise unsatisfactory from the expert 
system technique without a major cognitive effort on the 
part of the user.  
 To be fair, the expert system produced results using 
symbolic inputs essentially the same as the neural network 
on the numerically encoded inputs. This suggests that with 
the use of this encoding further improvements may be 
achieved. The benefit of expert system technique is that a 
rule trace is possible for every decision, so failures can be 
accounted for and successes understood by users. This tends 
to be an issue in the wider use of neural networks, where 
the "black box" nature of predictions are unacceptable, 
mistrusted or merely not preferred. 
 The next stage in our work will be to properly integrate 
the three techniques. Thus, a neural network will be used to 
learn the significant properties of the data, which can then 
be examined and verified by the use of the clustering 
technique, and the training file constructed for the expert 
system technique. Even further down the track, we can 
envisage an on-line interactive use of the three techniques. 
Thus, when a new rule is required in the expert system, the 
neural network can be run on the as yet uncategorised 
patterns remaining to suggest some rules, and the clusters of 
patterns correctly or incorrectly classified be visualised on 
screen. 
 The use of these techniques systematically will allow 
the incorporation of such linguistic information with 
numeric well logs for improved results. 
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